812 research outputs found

    A normal form analysis in a finite neighborhood of a hopf bifurcation: on the center manifold dimension

    Get PDF
    The problem of determining the bounds of applicability of perturbation expansions in terms both of the system parameters and the state-space variable amplitude is a key point in the perturbation analysis of nonlinear systems. In the present paper an analysis in a finite neighborhood of a Hopf bifurcation is presented in order to analyze the conditions under which a Normal Form zero-divisors-based approach fails to describe the local dynamics and, therefore, a small divisor approach is required. The condition of “smallness” referred to the divisors is analyzed from both a qualitative and a quantitative point of view. Finally, a simple but effective analytical and numerical example is introduced to illustrate the theoretical issues along with an interpretation within a codimension-two framework

    Perturbation methods and proper orthogonal decomposition analysis for nonlinear aeroelastic systems

    Get PDF
    The modern engineering deals with applications of high complexity. From a mathematical point of view such a complexity means a large number of degrees of freedom and nonlinearities in the equations describing the process. To approach this difficult problem there are two levels of simplification. The first level is a physical reduction: the real problem is represented by mathematical models that are treated in order to be studied and their solution computed. At this level we can find all the discretization techniques like Galerkin projection or Finite Element Methods. The second level is a simplification of the original problem in order to study it in an easier way: a reduced order model is advocated. Simplification means to determine a dominant dynamics which drives the whole problem: not all the unknowns are considered independent being some of them functions of the remaining others. Two methodologies are considered in this a Thesis. The first is the Lie Transform Method based on the results of Normal Form Theory and the Center Manifold Theorem. For some conditions, called resonance or zero divisors, depending on combinations of the eigenvalues of the linearized system, the nonlinearity of the problem is reduced and a driving dynamics determined. The second is the Proper Orthogonal Decomposition (POD), which from the analysis of representative time responses of the original problem determines a subspace of state variables energetically significant spanned by the Proper Orthogonal Modes (POMs). The main issues related to the Lie Transform Method, as for all the Normal Form based Method, is the presence of small divisors for which there is no general rules to be determined when considering nonconservative systems. In the present work, this problem is considered and some physical parameters are related to such conditions determining qualitatively what small means for a divisor relatively to a perturbation parameter. Moreover, starting from the analytical results obtained the POD behavior in the neighborhood of a bifurcation point has been studied. In particular, POMs has been related to the linearized modes of the studied systems and it has been demonstrated their equivalence for systems experiencing a Hopf bifurcation. Moreover, some conditions of equivalence are addressed also in presence of static bifurcations with forcing loads. Finally, the relation i between modal activation and energy distribution has been studied and the possibility to relate POD behavior and nonlinearity (small divisors) of the response has been addressed

    Effects of variable resistance on smart structures of cubic reconnaissance satellites in various thermal and frequency shocking conditions

    Get PDF
    Piezoelectric materials are widely used as smart structures in cubic reconnaissance satellites because of their sensing, actuating, and energy-harvesting abilities. In this study, an analytical model is developed in specific mechanical thermal shocking conditions. A special circuit and apparatus is designed for experimentation on the basis of the inverse piezoelectric effect. An equivalent circuit method is used to establish the relationship between the resistance and peak-to-peak voltage of lead zirconate titanate used as smart materials for cubic reconnaissance satellites. Various frequencies and resistance were applied in different mechanical thermal shocking conditions. Moreover, numerical simulations are conducted in various mechanical loading conditions to determine the accumulative effect. The model provides a novel mechanism to characterize the smart structures in cubic reconnaissance satellites. A rise in temperature increases peak-to-peak voltage; a rise in frequency decreases peak-to-peak voltage; and intensified resistance decreases peak-to-peak voltage. Based on experimentation and simulation, the optimum resistance is predicted for the various frequencies and temperatures. The various conditions may correspond to the different applications of smart structures for cubic reconnaissance satellites. The analytical calculations are in good agreement with experimental and numerical calculations. © 2017, The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany

    OMA analysis of a launcher under operational conditions with time-varying properties

    Get PDF
    The objective of the paper is the investigation of the capability of Operational Modal Analysis approaches to deal with time-varying system in the low-frequency domain. Specifically, the problem of the identification of the dynamic properties of a launch-vehicle, working under actual operative conditions, is studied. Two OMA methods are considered: the Frequency Domain Decomposition and the Hilbert Transform Method. It is demonstrated that both OMA approaches allow the time-tracking of modal parameters, namely, natural frequencies, damping ratios and mode shapes, from the response accelerations only recorded during actual flight tests of a launcher characterized by a large mass variation due to fuel burning typical of the first phase of the flight

    Digital design of medical replicas via desktop systems: shape evaluation of colon parts

    Get PDF
    In this paper, we aim at providing results concerning the application of desktop systems for rapid prototyping of medical replicas that involve complex shapes, as, for example, folds of a colon. Medical replicas may assist preoperative planning or tutoring in surgery to better understand the interaction among pathology and organs. Major goals of the paper concern with guiding the digital design workflow of the replicas and understanding their final performance, according to the requirements asked by the medics (shape accuracy, capability of seeing both inner and outer details, and support and possible interfacing with other organs). In particular, after the analysis of these requirements, we apply digital design for colon replicas, adopting two desktop systems. ,e experimental results confirm that the proposed preprocessing strategy is able to conduct to the manufacturing of colon replicas divided in self-supporting segments, minimizing the supports during printing. ,is allows also to reach an acceptable level of final quality, according to the request of having a 3D presurgery overview of the problems. ,ese replicas are compared through reverse engineering acquisitions made by a structured-light system, to assess the achieved shape and dimensional accuracy. Final results demonstrate that low-cost desktop systems, coupled with proper strategy of preprocessing, may have shape deviation in the range of ±1 mm, good for physical manipulations during medical diagnosis and explanation

    Bronchogenic cyst of the ileal mesentery: a case report and a review of literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Bronchogenic cyst is a rare clinical entity that occurs due to abnormal development of the foregut; the majority of bronchogenic cysts have been described in the mediastinum and they are rarely found in an extrathoracic location.</p> <p>Case presentation</p> <p>We describe the case of an intra-abdominal bronchogenic cyst of the mesentery, incidentally discovered during an emergency laparotomy for a perforated gastric ulcer in a 33-year-old Caucasian man.</p> <p>Conclusions</p> <p>Bronchogenic cyst should be considered in the differential diagnosis of subdiaphragmatic masses, even in an intraperitoneal location.</p

    Unicentric Castleman's disease approached as a pancreatic neoplasm: case report and review of literature

    Get PDF
    Castleman's disease is a rare lymphoproliferative disorder. Most cases occur in the mediastinum and the pancreatic localization is uncommon; currently there are only nine reported cases in the literature about peripancreatic localization. We report a case of a 62 years old man with a Castleman's disease mimicking a pancreatic neoplasm

    More Than Smell—COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis

    Get PDF
    Correction: Chemical Senses, Volume 46, 2021, bjab050, https://doi.org/10.1093/chemse/bjab050 Published: 08 December 2021Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change +/- 100) revealed a mean reduction of smell (-79.7 +/- 28.7, mean +/- standard deviation), taste (-69.0 +/- 32.6), and chemesthetic (-37.3 +/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis.The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.Peer reviewe

    Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms

    Get PDF
    In a preregistered, cross-sectional study we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC=0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≀2 indicate high odds of symptomatic COVID-19 (4&lt;10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
    • 

    corecore